Home / All Definitions / Algebra / Calculus / Pre-Calculus / Real World Applications / ARC Definition
ARC an abbreviation of average rate of change is the change in the value of a quantity divided by the elapsed time. For a function, this is the change in the y-value (Δy) divided by the change in the x-value (Δx) for two distinct points on the graph. It should be noted that average rate of change is not the same thing as the slope of the secant line of a curve. There are several formulas that can be used to calculate average rate of change. They include: average rate of change = Δy⁄Δx = y2 - y1⁄x2 - x1 = f(x2) – f(x1)⁄x2 - x1 = f(x + h) – f(x)⁄h.
Given a function f(x) plotted in the cartesian plane above as y = f(x), the average rate of change (or average rate of change function) of f from x to a is given by: A(x, a) = f(x) – f(a)⁄x - a. This corresponds the slope of the secant line connecting the points (x, f(x)) and (a, f(a)). The limiting value f’(x) = lima->x f(x) – f(a)⁄x - a as the point a approaches x gives the instantaneous slope of the tangent line to f(x) at each point x, which is a quantity known as the derivative of f(x), denoted f’(x) or d f / dx.
“Average Rate of Change.” From Wolfram MathWorld, mathworld.wolfram.com/AverageRateofChange.html.
“Average Rate of Change.” Mathwords, www.mathwords.com/a/average_rate_change.htm.
Our site is presently undergoing maintenance in order to upgrade the site.
Please be patient and understand that it will take some time to complete this work and random things may not work as intended.
Check out our free browser extension for Chrome, Firefox, Edge, Safari, & Opera.
For more information about our browser extension visit here!
Add Math Converse as app to your home screen.
Take a photo of the qr code to share this page or to open it quickly on your phone: