Home / All Definitions / Algebra / Calculus / Pre-Calculus / Real World Applications / ARC Definition
ARC an abbreviation of average rate of change is the change in the value of a quantity divided by the elapsed time. For a function, this is the change in the y-value (Δy) divided by the change in the x-value (Δx) for two distinct points on the graph. It should be noted that average rate of change is not the same thing as the slope of the secant line of a curve. There are several formulas that can be used to calculate average rate of change. They include: average rate of change = Δy⁄Δx = y2 - y1⁄x2 - x1 = f(x2) – f(x1)⁄x2 - x1 = f(x + h) – f(x)⁄h.
Given a function f(x) plotted in the cartesian plane above as y = f(x), the average rate of change (or average rate of change function) of f from x to a is given by: A(x, a) = f(x) – f(a)⁄x - a. This corresponds the slope of the secant line connecting the points (x, f(x)) and (a, f(a)). The limiting value f’(x) = lima->x f(x) – f(a)⁄x - a as the point a approaches x gives the instantaneous slope of the tangent line to f(x) at each point x, which is a quantity known as the derivative of f(x), denoted f’(x) or d f / dx.
“Average Rate of Change.” From Wolfram MathWorld, mathworld.wolfram.com/AverageRateofChange.html.
“Average Rate of Change.” Mathwords, www.mathwords.com/a/average_rate_change.htm.
Check out our free app for iOS & Android.
For more information about our app visit here!
Add Math Converse as app to your home screen.
Check out our free desktop application for macOS, Windows & Linux.
For more information about our desktop application visit here!
Check out our free browser extension for Chrome, Firefox, Edge, Safari, & Opera.
For more information about our browser extension visit here!
Placeholder
Placeholder